
Land surface phenology as an integrative 
diagnostic for landscape modelling 
Henebry, G.M. 

Geographic Information Science Center of Excellence, South Dakota 
State University, 1021 Medary Ave., Wecota 506B, Brookings, SD, 57007-
3510 USA, Geoffrey.Henebry@sdstate.edu 

Abstract: Integrative landscape modelling requires integrative diagnostics to 
enable both model developers and model users to calibrate and validate 
against trusted reference data and to evaluate the consequences of 
simulation experiments.  Land surface phenology can serve as such an 
integrative diagnostic.  What phenology is in general and land surface 
phenology in particular is reviewed.  How land surface phenology is well-
suited to model tuning and simulation experiments is then discussed.  The 
paper concludes with an example of modelling future land use change in 
the Northern Great Plains of North America if large areas of croplands 
currently in maize/soybean rotation shift to perennial grasses harvested for 
feedstock to cellulosic ethanol biorefineries. 
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1. Phenology and Land Surface Phenology  

1.1. Phenology 
The seminal conservationist Aldo Leopold observed: “Phenology, in short, is a ‘horizontal 
science’ which transects all ordinary biological professions. Whoever sees the land as a 
whole is likely to have an interest in it” (Leopold and Jones, 1947). This quotation points to 
the crucial role that phenological data, both observations and simulations, should play in 
integrative landscape modelling. But what is phenology?  
There are several definitions of phenology in circulation.  The following statement, first 
articulated by the US/IBP Phenology Committee, is particularly concise and insightful:  

Phenology is the study of the timing of recurring biological events, 
the causes of their timing, their relationship to biotic and abiotic 
forces, and the inter-relations among phases of the same or 
different species.  (Lieth, 1974) 

Note that phenology is about the timing of biotic phenomena.  It is important here to 
distinguish phenology from seasonality.  Seasonality refers to temporal patterns of abiotic 
variables occurring at annual or sub-annual timescales.   Phenology and seasonality are 
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thus complementary aspects of ecosystem function that interact: abiotic forces elicit biotic 
processes and biotic forces shape abiotic processes (Henebry, 2003). 

1.2. Land Surface Phenology 
Land surface phenology (hereinafter LSP) describes the spatio-temporal patterns of the 
vegetated land surface as observed by remote sensors at spatial resolutions and extents 
relevant to meteorological processes in the atmospheric boundary layer (de Beurs and 
Henebry, 2004).  LSP tracks the seasonal timing and progression of interactions between 
the land surface and the lower atmosphere, such as the onset of spring in the extra-tropics, 
heralded by leaf flush and canopy development that lowers the surface albedo and 
increases the net radiation at the surface bringing a burst of evapotranspiration and 
moderation of the diel temperature range (Schwartz, 1990; Fitzjarrald et al., 2001).  LSP 
can be influenced by human action: land use and land management practices affect the 
dynamics of the vegetated land surface—agriculture being the most obvious example. 
Thus, LSP is central to the modelling and monitoring of weather and climate, the water and 
carbon cycles, and the human dimensions of regional and global change.  
We can observe LSP from orbital platforms by sensing reflected solar radiation as visible 
through shortwave infrared (e.g., Zhang et al., 2006; Wardlow and Egbert, 2008) or 
emitted terrestrial radiation as middle infrared through thermal infrared and microwaves 
(e.g., Smith et al., 2004; Kimball, 2006), or backscattered anthropogenic radiation as radar 
or lidar (e.g., Kimball et al., 2004; Chasmer et al., 2008).  In contrast to the species-centric 
perspective of traditional phenology, LSP is intrinsically multiscale due to signal mixing 
arising from sensor spatial resolutions that are coarse relative to the spatial heterogeneity of 
the observed surfaces, which may include many different plant species as well as abiotic 
surfaces such as snow, soils, water, and the building materials used in human settlements.   

2. Using LSPs in Integrative Landscape Modelling 

2.1. LSP as a Model Diagnostic 
LSP has long been tracked using the Normalized Difference Vegetation Index (NDVI) that 
exploits the strong spectral contrast between the near infrared (bright, high reflectance) and 
red (dark, low reflectance) in healthy green vegetation (e.g., Goward et al., 1985; Justice et 
al., 1985).  LSP has been represented in mesoscale meteorological models by climatologies 
of fractional vegetation cover (fVeg) or leaf area index (LAI) keyed to specific land cover 
categories (e.g., Chen and Dudhia, 2001a,b; Skamarock et al., 2008).   
NDVI, fVeg, and LAI are all measures of intensive properties (like temperature or density) 
rather than extensive properties (like heat capacity or biomass).  The scale dependency of 
an intensive property is not known a priori; indeed, this scale dependency itself depends on 
the context of phenomena under investigation, including the specifics on how 
measurements or simulations are carried out.  While this lack of extensivity can complicate 
inferences about causal influences in observational studies, it can offer some advantages in 
integrative modelling.  I mention here only three.   
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First, LSPs of complex landscapes can be synthesized through the use of phenological 
endmembers.  Although the NDVI (or another nonlinear spectral vegetation index) is not 
susceptible to linear (un)mixing, the linear models of the temporal profiles of the NDVI can 
be mixed (and unmixed).  Simple quadratic models that link NDVI to the temporal 
progression of accumulated growing degree-days (or thermal time, accumulated from 
January 1st using a base of 0 oC) have been successfully applied to a variety of settings and 
scales (de Beurs and Henebry, 2004, 2005, 2008, 2010; de Beurs et al., 2009).  
Second, LSPs can be used as a flexible model forcing in simulation experiments.  In many 
models of land surface dynamics, land cover classes are linked to a suite of biophysical 
attributes.  Changing land cover class triggers a cascade of abrupt changes in land surface 
properties.  LSPs can be used to finesse the effects of land management practices or land 
use changes within land cover classes.  Replacing fVeg climatologies in land surface 
models with LSPs based on remotely sensed observations can elicit significant changes in 
regional hydrometeorology (e.g., Stauffer et al., 2009).  
Third, LSPs bring together the temporal dimension, by tracking the unfolding of vegetation 
growth and development during the growing season, and the spatial dimension, by 
articulating the collection of seasonal trajectories within a geospatial reference frame.  
LSPs can, thus, be characterized by a time series of spatial pattern metrics (Henebry, 1993; 
Henebry and Su, 1993; Viña and Henebry, 2005).  Model diagnostics—whether sensitivity, 
error, or uncertainty analyses—can be keyed to LSPs either as forcing or response within a 
Monte Carlo (Henebry, 1995) or resampling (Henebry, 1993; Sherman and Carlstein, 1996) 
framework. 

2.2. Shifting LSPs: From Maize to Switchgrass 
Land cover change across the Northern Great Plains of North America over the past three 
decades has been driven by changes in agricultural land management (shift to conservation 
tillage; expansion of irrigation; reduction in herbicide applications), government incentives 
(Conservation Reserve Program; subsidies to maize-based ethanol production), crop 
varieties (development of cold-hardy soybean and herbicide-resistant maize and soybean), 
and market dynamics (increasing world demand and crop prices).   
Climate change across the Northern Great Plains over the past three decades has been 
evident in trends toward earlier warmth in the spring and a longer frost-free season.  
Together these land and climate changes can induce shifts in local and regional LSPs.  Any 
significant shift in LSP may correspond to a significant shift in actual evapotranspiration, 
with consequences for regional hydrometeorology.  For an ongoing study, we are 
projecting how the regional land surface dynamics could appear across a five-state region 
(North and South Dakota, Nebraska, Minnesota, and Iowa; Figure 1) under a scenario of 
widespread cultivation of switchgrass (Panicum virgatum L.) or other perennial grasses as 
cellulosic feedstock for ethanol production. Land use change in the Northern Great Plains 
associated with ethanol feedstocks (whether a grain like maize or a cellulosic source like 
switchgrass or maize stover) is likely to be restricted to areas near existing and planned 
biorefineries. 
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Figure 1. False color composite of three NDVI images derived from MODIS data. Red, green and 
blue color planes display May 25, August 13, and April 7, 2006, respectively. White crosses indicate 

weather stations used in the analysis. Refer to Table 1 for detail on labeled sites. 
 
Switchgrass and other perennial C4 grasses can be found in abundance in the Flint Hills of 
Kansas, the largest remnant of tallgrass prairie, which is located south of the study region 
in eastern Kansas (orange elongated elliptical area to the left of labels A and B in Figure 1).  

2.3. Toward LSP Transfer Functions 
A key problem in projecting future landscapes is simulating the associated land surface 
phenologies. A recent study of top land surface models concluded that the representations 
of crop phenologies among the models diverged sufficiently to impede a useful 
intercomparison of simulation results from their associated climate models (Pitman et al., 
2009).  Grass phenologies are far more complicated than crop phenologies due to multiple 
forcing factors, photosynthetic pathways (C3 vs. C4), and spatial heterogeneities in resource 
availabilities and land management practices (Henebry, 2003).  Furthermore, many 
tallgrass species (such as switchgrass) are widely distributed across temperature, but not 
moisture, gradients, resulting in significant ecotypic variation across the species’ 
geographic range. Thus, how feasible is “transplanting” tallgrass LSPs across isotherms—
but along isohyets—to simulate shift from maize to switchgrass?  
Hopkins (1918) set forth a ruleset to estimate the offset in the onset of spring in the US east 
of the Rockies Mountains as a function of latitude (4 days per degree northward), longitude 
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(1.25 days per degree westward), and elevation (1 day per 100 feet higher).  While this 
widely referenced “bioclimatic law” does capture some geographic patterns, it falls short of 
an effective transfer function for LSPs.  
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Figure 2. Relationship between the thermal time to peak NDVI (TTP) and latitude. 
 

 

As noted above, a quadratic model can provide a parsimonious link between an NDVI time 
series and thermal time:  

NDVIt = α + βAGDDt + γAGDDt
2 

where AGDDt is accumulated growing degree-days at day t, which is calculated as:  

AGDDt = AGDDt-1 + max(TempAvgt-BaseTemp, 0) 

where TempAvgt = the simple arithmetic average of maximum and minimum temperatures 
at day t and BaseTemp is the base temperature (here 0 oC) and max() is the maximum 
operator.  

The thermal time to peak NDVI (TTP) is a simple function of the parameter coefficients of 
fitted model (de Beurs and Henebry 2004, 2010):   

TTP = -β/2γ  

Based on LSP quadratic models fit to MODIS NDVI and weather station data at 14 sites 
from 2000-2009 (shown in Figure 1), Figure 2 shows a strong latitudinal gradient in TTPs 
in the Northern Great Plains. This gradient results in part from a strong, nearly linear, 
gradient in accumulated daylight hours between 30 and 50 degrees north. AGDD, however, 
improves upon accumulated daylight by providing sensitivity to the variability of growing 
season weather. In turn, there is a geographic pattern in the quadratic parameter coefficients 
as a function of the TTP, although it is more variable at shorter TTPs (Figure 3). Estimating 
a quadratic LSP model within the domain is then a four-step process. First, the TTP is 
calculated as a function of latitude; second, the quadratic coefficient is calculated as a 
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function of TTP; third, we solve for the linear coefficient; and, finally, an intercept must be 
selected (here 0.20).   
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Figure 3. Relationship between quadratic coefficients and TTPs. 
 

This LSP transfer function was implemented at five sites (Table 1).  The fits are reasonable 
except for the most northerly site, Grand Forks, North Dakota, that exhibits in the decade 
of data two distinct LSP patterns with earlier and later TTPs (Table 1) that the transfer 
function fails to capture.    

 

Table 1. Characteristics of sites labelled in Figure 1. TTP = Thermal Time to Peak NDVI in 
accumulated growing degree-days (base 0 oC) calculated from LSP model fit to site data. TTP* = 

TTP estimated by LSP transfer function. 

Latitude (oN) Longitude (oW)Label Site TTP (oC) TTP* (oC) 

A El Dorado, KS 37.82 -96.84 2642 2651 

B Manhattan, KS 39.21 -96.60 2520 2504 

C Centerville, SD 43.04 -96.90 2130 2100 

D Brookings, SD 44.32 -96.77 1944 1966 

E Grand Forks, ND 47.92 -97.10 
1676 (early) 
1801 (late) 

1586 

Figure 4 shows an estimated switchgrass LSP contrasting with against three years of crop 
LSPs at Centerville, South Dakota. The change from annual summer to perennial crops 
affects water and energy exchanges. Integrating under the LSP curves in Figure 4 illustrates 
this difference; the switchgrass AUC equals 1778 versus 1896, 1962, and 1745 for the crop 
AUCs in 2000 (mesic), 2006 (hotter, drier) and 2008 (cooler, wetter), respectively, over the 
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period from May 1st to the autumnal equinox. However, the contrast is more pronounced in 
the early growing season. Integrating from May 1st to June 1st the switchgrass AUC is 282 
versus 226 (2000), 306 (2006), and 248 (2008), for the crops.  
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Figure 4. Crop-dominated LSPs versus a switchgrass LSP estimated by the LSP transfer function. 

Conclusion: Future Directions for LSP Modelling  
Although this LSP transfer function shows some promise, it clearly needs refinement, 
particularly to be able to capture later season moisture limitations. Indeed, devising a 
concise, effective parameterization scheme for land surface phenology in moisture-limited 
landscapes is one of the key challenges for future LSP research.  
A recent intercomparison of methods to derive the apparent start-of-season from older 
optical remote sensing data found that every algorithm evaluated exhibited shortcomings, 
particularly when exercised across a range of ecosystem types (White et al., 2009).  Most 
of these methods rely solely on a single spectral vegetation index, such as the NDVI. A 
methodological advance is needed to improve the LSP modeling and monitoring of 
changes and trends in LSPs.  
One promising avenue is the use of multiple remote sensing modalities at multiple spatial 
and temporal scales. By complementing the NDVI with datastreams from the thermal and 
microwave regions of the electromagnetic spectrum, a broad range of spatial and temporal 
resolutions can be brought to bear on the problem, including next generation products from 
the vast Landsat data archive (Roy et al., 2010).   
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